Computerised One Time Pads

From Telecomix Crypto Munitions Bureau

Theonetime pad cipher is arguably one of the most simple ciph€h cipher is
completely unbreakable by means of logics. Computan not crack it. The only
known method to find the correct keys is throtytiure. As torture is one form of
cryptanalysis (its called "rubber hose cryptanalysive could if we want say that this
cipher is in fact breakable.

Notice that remote key exchange over an unsecuveorieis not possible. ONLY
exchange cipherkeys directly with the person yoshvio communicate with.

If you ever plan on using the OTP cipher, you really need to make sure that you
completely under standsit. It issimple to make mistakes!

Contents

1 One Time Pad (OTP)

2 Known attacks against OTP

3 Software implementing OTP

4 TCMB manuals for manual and semi-manual OTP-og@tphy
o 4.1 Generating keys for the OTP cipher
o 4.2 Usage:
o 4.3 Encrypting with the OTP cipher
o 4.4 Example usage

5 Performing OTP cryptography by hand
o 5.1 Description of the code used
o 5.2 Alphabetizer

OneTime Pad (OTP)

"In cryptography, the one-time pad (OTP) is a tgpencryption, which has been
proven to be impossible to crack if used correttyvikipediaso it must be true!

One time pad is likely the most simple form of dogdgoritm. A key is generated and
shared between two peers that wish to communiciiteeach other. The key must be
equally long as the message that is sent. The kesy atso be transmitted person or
via a sneakernet of completely trusted couriefs/al send the key to your peer with
another crypto, OTP will be just as secure as tyete used to transmit the key. Do
not rely on other ciphers, the chain is just asiseas its weakest linko not

transmit the keys with any other means than sneakernet.)

Known attacks against OTP

Rubber hose cryptoanalysis

o Countermeasure: Usage of hidden channels to infoemeceiving
agent that you are under attack. A hidden chararekasily be
constructed by carefully avoiding a cleartext symboch as "b".
Whenever a message is found to contain the Iditeafter decryption,
it should then be assumed that the sending agenhipromized. To
save your friend from further subjection to thelrebhose, it is
advised that you pretend that no hidden channst exid play along
with the capturers while you think of a plan toaws your friend.
More elaborate schemes can of course be constructed

Software implementing OTP

Plugin for PidginPidgin-Paranoia

TCMB manualsfor manual and semi-manual OT P-
cryptography
Everything below is probably only interesting faneputer nerds :-)

Generating keysfor the OTP cipher

The following script (calledtpgrb) can be used to generate keys.

#!/bin/sh
dd bs=1 count=$1 if=/dev/random of=$2

Usage:
otpgrb 512 my-key

will generate a 512 byte long random number andtpatthe file my-key. Be sure to
use a computer with an encrypted hard drive, orauRAM file system, if you suspect
that your computer could ever end up in the hamdshers. If you are using
OpenBSD you need to exchange /dev/random with $devdom.

Encrypting with the OTP cipher

xor IS a C program that xors the input from stdin vétbiven file, byte after byte, and
presents the output to stdout. The syntax.igr'key ". If you do not want strange
stuff written to your screen, you could type sonmagHike "./xor key <

cleartext > ciphertext "

#include <stdio.h>

int main(int argv, char *argc[]¥{
FILE *seed;
intc, d;

seed = fopen(argc[1], "r");

¢ = getchar();
d = fgetc(seed);

while(c!=-1&&d!=-1){
putchar((char) c/d);

d = fgetc(seed);
¢ = getchar();

}

To compile it: "gcc xor.c -0 xor".
Example usage

Generating a key:

.Jotpgrb 128 key

128+0 records in

128+0 records out

128 bytes (128 B) copied, 0.00399996 s, 32.0 kB/s

hd key

00000000 39 ba422f6d 05f092 a76c527b 95 e b 93 ac
[9.B/m....IR{....|

00000010 6393 10e8d9al 6¢c02 6¢76407c824 09c 7f
lc....LIv@|.@..|

00000020 3b a2 b02532aa205c facs8e36c5d 9 b8 22 |;..%2.
\...6.."

00000030 a9 1¢c 36284089 f9 bb d18ca906eb8 850 bl
|..6(@......... P.|

00000040 cf88 4d 64 4d 85 b9 7f 1ac6 7298290 22c3d
[..MdM.....r.).,=|

00000050 1ce546c142dcc821 6012f3e5e7b b 0a d7
|..F.B.I'....... |

00000060 3fcab6cc83906cede f8h9a82792e b c6 dc
[2.1.9......0..

00000070 682 c5c044 a4 48 8f f9 38 ce bc 840 573 0d
|h...D.H..8....5.]

00000080

#

After you have generated your key, you need to giteethe person whom which you
wish to communicate with in the future. Put the kaeyan USB stick and deliver it to
your friend.

To encrypt messages, you needdo the plaintext with the OTP key:

echo Lets kill the king\! The revolution is here\ I > cleartext
.Ixor key < cleartext > ciphertext

shred cleartext

rm cleartext

history -c

hd ciphertext

00000000 75 df 36 5¢ 4d 6e 99 fe cb 4c 26 13f0c b f8 c5
[u.6\Mn...L&.....|

00000010 Od 4 31 c8 8d c9 09 22 1e 13 36 13 ee 3 5e8 16
..1..."..6..5..|

00000020 54 cc 90 4c 41 8a 48 39 88 a0 af 3¢

IT..LA.H9...<|

0000002c

#

Once your friend has received the key and the cipke it is possible to decipher the
message. To decrypt the ciphertext:

.Ixor key < ciphertext > cleartext

cat cleartext

Lets kill the king! The revolution is here!
#

Once a key has been used, it shouitl/ ER again be used. Both you and your friend
should throw it away. If you reuse the key, theheipisextremely vulnerable.

However, if you never reuse the keys, it is notsgiae to crack the cipher with any
known methods ;)

Performing OTP cryptography by hand

If the field agents memorize the coding schemeka®gp numbered records of OTP-
keys it is possible to perform the computationsdeeefor perfectly secure
communicatiorby hand.

The cipher is very simple. Just generate a randmuence of [a-z][1-6]-symbols (32
symbols) and save them as your key. When you ehargpessage, just shift the clear
text left equal to the position in the alphabethaf key (a = O shifts left, b = 1 shifts
left, etc.). Do this symbol by symbol until you ceahe end of the message.
Decryption works exactly the same, but in reverse.

Generate randomness by collecting binary sequdrm@s/dev/random (linux) or
/dev/srandom (OpenBSD). Use thpgrb script to do this. Thexor the random
blocks that have been generated (possibly at diffamachines at different times) to
generate a new binary random sequence. This segjgentd then be fed to
alphabetize (see below) to create an standard human readaiphedf the key. If the
field agent writes this key down, it is possiblegtrform the rest of the calculations
with only a brain, a paper and a pen.

Description of the code used

This table is very useful if you want to use thergption scheme without a computer.
TCMB field agents should have printouts of it ieithcipherbooks, along with the
numbered OTP-keys.

abcdefghijkimnopqrstuvxyz123456

a abcdefghijkimnopqrstuvxyz123456
b bedefghijkimnopgrstuvxyz123456a
¢ cdefghijklmnopgrstuvxyz123456ab
d defghijkimnopgrstuvxyz123456abc

e efghijkimnopgrstuvxyz123456abcd
f fghijklmnopqgrstuvxyz123456abcde

g ghijkimnopgrstuvxyz123456abcdef
h hijkimnopgrstuvxyz123456abcdefg
i ijkimnopgrstuvxyz123456abcdefgh

j jkimnopgrstuvxyz123456abcdefghi

k kimnopgrstuvxyz123456abcdefghij
I Imnopqrstuvxyz123456abcdefghijk

m mnopqrstuvxyz123456abcdefghijkl
n nopgrstuvxyz123456abcdefghijkim
0 opgrstuvxyz123456abcdefghijklmn
p pgrstuvxyz123456abcdefghijkimno
g grstuvxyz123456abcdefghijkimnop
r rstuvxyz123456abcdefghijkimnopq

s stuvxyz123456abcdefghijkimnopgr
t tuvxyz123456abcdefghijkimnopgrs

u uvxyz123456abcdefghijkimnopqrst
v vxyz123456abcdefghijkimnopgrstu
X Xyz123456abcdefghijkimnopgrstuv
y yz123456abcdefghijkimnopqgrstuvx
z 2123456abcdefghijkimnopgrstuvxy
1 123456abcdefghijkimnopgrstuvxyz
2 23456abcdefghijkimnopgrstuvxyzl
3 3456abcdefghijkimnopqrstuvxyz12
4 456abcdefghijkimnopqrstuvxyz123
5 56abcdefghijkimnopgrstuvxyz1234
6 6abcdefghijkimnopqrstuvxyz12345

It is a simple tabula recta for the 32 symbol latighabet we use. The number 32 was
chosen because it is a nice exponent of 2 and bedtis probably the last such
exponent that is easily usable by humans. A 64 syiohg alphabet would have
generated a 4 times larger table; 2 times largboth horizontal and vertical length.
On the other hand, 16 symbols would add compldeétyause there are obviously
more letters in most human alphabets.

The convention is to replace the symbols 1-6 witlatgver you think is more needed.
Such as space, lol 3)

The left-most column is thieey. For each symbol that you are going to encrypt or
decrypt, find the random key in this column. The-toost row is thelear text.
When you encrypt, the clear text is known. When gearypt, the clear text is what
should appear when you decryptrgpto text. All symbols in the table are used to
garble the clear text into crypto text, or the otlvay around, using the key.

Encryption: Find the key in the left-most column. Then finé ttiear text-symbol in
the top-most row. Go straight down from the cleat-symbol to the row where the
key is. The letter you find here is the crypto teyinbol. Write it down and continue
with the next symbol you want to encrygixample: You want to encrypt the symbol
F with the key 2. A is then the crypto text-symbol.

Decryption: Find the key in the left-most column. Go straighthe right from this
point to the crypto text-symbol. When you findgg straight up. When you reach the
"clear text"-row at the very top, you will find tledear text symboExample: The

key is D, the ciphersymbol is K. Then the cleat+®mbol is H.

Alphabetizer
Recodes binary input to our alphabet and outp@ABCII.
Usage:

« Syntax: alphabetizer [human]

o if you supply "human" as argument 1, it will writee output in nice
16-symbol wide rows and give an ending newline.

« XF-OTP-STDO compatible: It throws away the 3 most significant bits in
each byte during recoding. At output it maps thhabet to the ASCII letters
[a-z] and [1-6]. Reads from stdin until EOF andtesito stdout. (Notice that
XF-OTP-STDO is a deprecated coding scheme. This doeever not weaken
the security of the cipher.)

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>

char alphabetize(int byte)
{
/*
The alphabet we are using is 32 characters | ong:
abcdefghijkimnopqgrstuvwxyz123456
*/

if(byte >=32)
fprintf(stderr, "Internal program error.\n");
exit(-1);
}
if(byte < 26)
{
return((char) byte +'a');
}
else if(byte == 26) return('1");
else if(byte == 27) return('2");
else if(byte == 28) return('3");
else if(byte == 29) return('4");

else if(byte == 30) return('5");
else if(byte == 31) return('6");

}

int main(int argv, char *argc[]¥{
int byte;
inti=0;
bool human = false;
iftargv>1)
if(argv>2)

fprintf(stderr, "Too many arguments.\n");
exit(1);

if('strcmp(argc[1], "human"))

fprintf(stderr, "Using human readable form at.\n");
human = true;

}

else

fprintf(stderr, "Unrecognized argument.\n");
exit(1);
}
}

byte = getchar();

while(byte 1= -1)

if(human && i ==16)
{

/* we want 16 letter long rows if we are h umans */
i=0;
putchar(\n");

byte &= Ox1F;

putchar(alphabetize(byte));
i++;

byte = getchar();

}
if(human) putchar(\n";

ONE-TIME IMAGE

One-Time Image is a program written in Java to encrypt imagesgisie principle

of the one-time pad to create a pair of black amitevimages. Each appears as a
'snow' of black and white pixels, and no informatican be extracted from either
image on its own - unlike most cryptography, ih@ merely 'very difficult' to extract
information: an implementation of the one-time imagrinciple with true random
numbers is *perfectly* secure and unbreakable (iactise this program uses the
default Java random number generator, and soasgstilutely secure - information is
provided in the source code on how to add your mmadom number generator if you
want to make it so).

However, despite the fact that no information canrdtrieved from either image on
its own, if both are printed onto transparencied ane is laid directly over the other,
the original image will immediately and clearly @&ap. One-Time Image is free and
open-source - you caget the program and source code here

HoOw DOESIT WORK?

The principle of the one-time pad was developednduworld War One, though it
was 25 years before mathematiciarproved it was perfectly secure, as opposed to

merely prohibitously difficult to break. It is a mesimple substitution cypherbut
with the twist that the key is the same lengthheesrhessage. As a result each letter
has its own unique (and random) rotation, makirggehcoded message proof against
any sort of analysis without the key. The finaluless a pair of random-looking
message (one the encrypted message, one the keéytausacrypt it) of the same
length, either of which cannot be broken or analyiseany way on its own, but which
can easily be decoded once the two are broughthiege

TEST

One-Time Image extends the principle to that ofges First, the source image is
converted to black and white (not greyscale, traekband white with pixels of only
these two different colours).

Secondly a key image is generated, of the samendioes, where each pixel is
randomly set to white or black. Third, the origialage is encrypted using this key -
if the pixel in the key is white then the corresgioig pixel in the original image is

used in the encrypted image, whereas if the keglpéxblack then the corresponding
pixel in the original image is flipped (black to ity white to black) for the encrypted
image. The result is two images of apparently ramttack and white pixels.

Finally, each image is then doubled in size - episiel becomes a 2x2 square of
pixels. Black pixels have black pixels in the teftland bottom-right corners while

the other two pixels are while, while a white pixelthe original image produces the
opposite 2x2 square. These enlarged images afe#ieencrypted ones - they have
the appearance of random static, or snow, andevaitiie can be decrypted on its own
no matter how powerful the computer or clever thalyst..

The trick is that, when printed onto transpareneied one is laid over the other (the
order is irrelevant), the original image is sudgemvealed! This is because a black
pixel in the original image produced pixels of dint colour in the key and
encrypted images (one black, one white). Sinceetldeck and white pixels became
2x2 squares with two black and two white pixelsewloverlaid all four pixels in the
square become black. However, a white pixel in ahiginal produced pixels of
matching colour in the key and encrypted imagesh(lbtack, or both white). Hence
the 2x2 squares in the final images are ident@adl when overlaid half the pixels
remain white. Hence, when you look at the imagenfemything but very short range,
these 2x2 squares look grey while other look black.

If you don't have a printer and transparenciesaondh you can demonstrate it for
yourself using Photoshop or some other image-méatipn program - take one of the
output images and import/paste the other on top aé a new layer and you'll see
your original image.

THE PROGRAM

You can download the program with source code here. It is released under the GPL, so you're free to
use, alter and redistribute it. The interface is pretty basic: Java's not my favorite language, though | can
get by with it (I used it in this case for its image handling capabilities). A readme file with various
information is included, along wtih makefiles, directions to run it, etc.

What's it useful for? In the world of serious cgraphy - not much. In practise it
makes a lot more sense to use the same principlesotduce a pair of USB keys
rather than messing around with transparent sloé@tsnted static. And even then the
one-time pad is mostly a curiosity: its lack of fertication, need to transport the
message securely, need to dispose of the keysebeaiter use and other problems
means its usage is limited.

It is, however, a useful tool for demonstrating ghanciple behind the one-time pad
and cryptographic principles in general, since tbecoding is automatic,
instantaneous and very visual. The fact that tramesyries are involved also makes it
perfectly suited for use with overhead projectbiseing formally taught. It's also fun
to just play around with - | find it fascinatinghet way two nonsensical images
produce a meaningful one when overlayed (but malyats just me). You could also
use it for activities like orienteering, by givimge transparency to a team and leaving
the other at the point they need to locate (it'dikeea high-tech equivalent of those
hole-punches they normally use).

